

Investigation into levels of polychlorinated naphthalenes (PCNs) in carcass fat, offal, fish, eggs, milk and processed products

OCTOBER 2010

OCTOBER 2010

TABLE OF CONTENTS

2
3
4
4
5
5
6
6
6 6
7
9
9
10
11

OCTOBER 2010

SUMMARY

The Food Safety Authority of Ireland FSAI in collaboration with the Department of Agriculture, Fisheries and Food and the Marine Institute have carried out a study of levels of polychlorinated naphthalenes (PCNs) in carcass fat, liver, eggs, fish and milk produced in Ireland and a select number of processed products available at retail level. The study was undertaken because of awareness about the possible effects on human health of these biopersistent environmental contaminants, known to be present in a number of foodstuffs, notably meat, fish, eggs and dairy products. Furthermore the aim of this study also was to proactively monitor the Irish food supply for emerging contaminants, and to aid national and international efforts in the management of these contaminants.

This study demonstrates the presence of PCNs in the foodstuffs examined and provides baseline information on the concentrations found. Whilst there is variation in occurrence depending on individual congeners of these contaminants and the types of food studied, the widespread detection in Irish foodstuffs underlines the ubiquity of these contaminants, since Ireland generally shows food contamination levels that are below the European average for environmental contaminants such as dioxins and PCBs except following specific contamination incidents.

The profile of PCN congener occurrence in some foods (e.g. some vegetable-based foods, fish etc, where metabolic or other degradation pathways are unlikely to be significant) is similar to that of commercial mixtures, and despite other sources such as incineration being reported, the legacy of past commercial usage still appears to strongly influence the background pattern of occurrence.

Overall, the survey shows that Irish produce contains low amounts of the persistent biopersistent toxicants measured in this survey, however levels observed do not raise concern for human health.

OCTOBER 2010

ABBREVIATIONS

Abbreviation	Full Name
b.w.	body weight
congener	a chemical substance related to another
DAFF	Department of Agriculture, Fisheries and Food
EC	European Community
EFSA	European Food Safety Authority
FSAI	Food Safety Authority of Ireland
HSE	Health Service Executive
JECFA	FAO/WHO Joint Expert Committee Food Additives and Contaminants
LOD	Limit of Detection
LOQ	Limit of Quantification/Quantitation
МІ	Marine Institute
ng	nanogram (0.000000001 g)
РСВ	polychlorinated biphenyl
PCDD/F	abbreviation for PCDDs and PCDFs
PCDDs	polychlorinated dibenzo-p-dioxins
PCDFs	polychlorinated dibenzofurans
PCNs	polychlorinated naphthalenes
pg	picogram (0.000000000001 g)
ppb	parts per billion (equal to ng/g or µg/kg)
SCF	Scientific Committee of Food
TDI	Tolerable Daily Intake
TEF	toxic equivalency factor
TEQ	toxicity equivalent
ТШ	Tolerable Weekly Intake
Upper-bound	Analytical results reported below the LOD set at the LOD value
w.w.	wet weight or whole weight
hð	microgram (0.000001 g)
Σ	Sum

OCTOBER 2010

BACKGROUND

The Food Safety Authority of Ireland (FSAI) mission is to ensure the safety of food consumed, distributed, produced and sold on the Irish market. In this respect, the FSAI co-ordinates the collation of food safety surveillance information from laboratories run by the Official Agencies under service contract to the Authority. These include the Health Service Executive (HSE), the Department of Agriculture, Fisheries and Food, the Sea Fisheries Protection Authority, the Marine Institute and the local authorities. The FSAI also conducts targeted food safety surveillance in areas where potential safety issues have been identified. This report provides the results of a targeted surveillance study on levels of polychlorinated naphthalenes (PCNs) in carcass fat, offal, eggs, fish and milk produced in Ireland and a selection of processed products available at retail level.

The study is the first examination of Irish food for the presence of PCNs undertaken by FSAI and aims to monitor the Irish food supply for emerging contaminants, and to aid national and international efforts in the management of these contaminants

Polychlorinated naphthalenes

Polychlorinated naphthalenes (PCNs) comprise a sub-group of 75 congeners, some with recognised toxic, bioaccumulative and persistence properties. As an industrial chemical, commercial PCN mixtures (e.g. Halowaxes) were mass produced over much of the last century and were commonly used in electrical equipment due to their physical properties of hydrophobicity, high chemical and thermal stability, good weather resistance, good electrical insulating properties and low flammability. Apart from the environmental release associated with this commercial use, PCNs are also reported to be produced in small amounts as combustion products^{1,2}.

The structural similarity of PCNs to the highly toxic 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) molecule indicates an aryl hydrocarbon (Ah) receptor-mediated mechanism of toxicity, and a number of toxic responses such as mortality, embryotoxicity, hepatotoxicity, immunotoxicity, dermal lesions, teratogenicity and carcinogenicity have been reported^{3,4,5,6,7}. In humans, severe skin reactions (chloracne) and liver disease have both been reported after occupational exposure to PCNs. Other symptoms found in workers include cirrhosis of the liver, irritation of the eyes, fatigue, headache, anaemia, haematuria, anorexia, and nausea⁸. A European Food Safety Authority (EFSA) scientific colloquium on dioxins in 2004 concluded that compounds such as PCNs that exhibited dioxin-like toxicity should be considered for the Toxic Equivalency Factor (TEF) approach to defining toxicity⁹. This conclusion was shared by the expert panel reviewing the WHO TEF system in 2005¹⁰.

In common with other similar environmental contaminants such as dioxins and PCBs, the main pathway to human exposure is likely to be through dietary intake.

OCTOBER 2010

MATERIALS AND METHODS

Study outline

The present study was undertaken to investigate the current levels of PCNs in carcass fat, offal, eggs, fish and milk and processed product.

For this survey the following types of food samples were collected (1)

SAMPLE TYPE/SPECIES	MATRIX	NUMBER OF SAMPLES	NUMBER OF SUB-SAMPLES PER SAMPLE
	FAT	13	10-40 TISSUE SAMPLES
AVIAN	LIVER	3	10-40 TISSUE SAMPLES
	EGGS	20	24 UNITS
	FAT	9	10 TISSUE SAMPLES
BOVINE	LIVER	2	10 TISSUE SAMPLES
	MILK	32	1 TANKER SAMPLE
OVINE	FAT	10	10 TISSUE SAMPLES
OVINE	LIVER	3	10 TISSUE SAMPLES
DODOINE	FAT	6	10-20 TISSUE SAMPLES
PORCINE	LIVER	2	10 TISSUE SAMPLES
EQUINE	LIVER	2	10 TISSUE SAMPLES
VEGETABLES	POTATOES	2	1KG COMPOSITE
	CABBAGE	1	4 UNITS
	TOMATOES	1	22 UNITS
	MUSHROOMS	1	5*250G PACKETS
PROCESSED VEGETABLES	BAKED BEANS (CANNED)	1	5 CANS
	CANNED SWEETCORN	1	6 CANS
	CANNED TOMATO PUREE	1	12 CANS
CEREALS	OATFLAKES	1	5 PACKETS
	CORNFLAKES	1	5 PACKETS
	BREAD	1	5 PACKETS
	RICE (MICROWAVEABLE)	1	4 PACKETS
PROCESSED MEAT	НАМ	1	8 PACKETS
	SAUSAGES	1	4 PACKETS
DAIRY PRODUCTS	BUTTER	5	5 PACKETS
	CHEESE	1	4 PACKETS
FISH	SALMON	5	1 INDIVIDUAL
	MACKEREL	3	50 INDIVIDUALS
	TROUT	3	44-50 INDIVIDUALS
	OYSTERS	5	50-100 INDIVIDUALS

Table 1 Food Samples included in this survey

Carcass fat, offal, milk and egg samples were supplied by officers of the Department of Agriculture, Fisheries and Food at production level (slaughterhouse: fat and liver, farm/dairy tanker: milk, packing station: eggs), fish and oysters were supplied by the Marine Institute and the remainder taken by officers of the Food Safety Authority of Ireland at retail level.

Analysis of the samples was undertaken by Food and Environment Research Agency (FERA), York, UK, during 2007-2008 under contract to FSAI.

OCTOBER 2010

Analytes included in the survey

PCN Congeners

• PCN 52	1,2,3,5,7-PentaCN	• PCN71/72	1,2,4,5,6,8-hexaCN/1,2,4,5,7,8-HexaCN
• PCN 53	1,2,3,5,8-PentaCN	• PCN 73	1,2,3,4,5,6,7-heptaCN
• PCN 66/67	1,2,3,4,6,7-hexaCN/1,2,3,5,6,7-hexaCN	• PCN 74	1,2,3,4,5,6,8-heptaCN
• PCN 68	1,2,3,5,6,8-hexaCN	• PCN 75	Octachloro-CN
• PCN 69	1,2,3,5,7,8-hexaCN		

The choice of congeners selected in this study was based principally on the toxicological characteristics of individual PCN congeners and the levels and patterns of occurrence. In practice however, the selection was limited by the availability of reliable reference standards. Thus the congeners analysed in this study included mostly penta- to octa- chlorinated compounds, and generally those that are reported to show the highest toxicological effect e.g. PCN 66, 67, 68, 73, etc.

Analytical methods

Sample preparation

The pooled samples were frozen by the Food Safety Authority of Ireland and sent to FERA. The homogenates of the samples were freeze-dried by the laboratory and further homogenized by means of grinding.

Sample Analysis

Samples were fortified with ¹³C-labelled analogues of target compounds and exhaustively extracted using mixed organic solvents. PCNs were chromatographically fractionated from potential interferants such as PCBs, using activated carbon. The extract was further purified using adsorption chromatography on alumina. Analytical measurement was carried out using high resolution gas chromatography coupled to high resolution mass spectrometry (HRGC-HRMS). Additional control was provided by the inclusion of methods blanks and a reference material. The method limits of detection (LODs) were computed from instrument sensitivity and levels detected in the method blanks. The LODs ranged typically from 0.02-0.1 ng/kg on a whole weight basis for individual PCN congeners. The analytical recovery rate (measured using ${}^{13}C_{10}$ labeled PCNs) was typically of the order of 55 – 91% for the foods reported here. Measurement uncertainty was also estimated and for PCN concentrations around 1 ng/kg, the uncertainty returned is ~20%; for concentrations approaching, or at the limit of detection (0.02 ng/kg), the value can rise to ~200%. A full description of the procedures used for the extraction and analysis has been reported earlier¹¹.

OCTOBER 2010

RESULTS

Table 2 presents concentrations of PCN congeners measured during this study. Results are expressed as ng/kg fresh weight. In each case results are presented as upper-bound values, substituting values below the analytical limit of quantification with the limit of quantification (<LOQ=LOQ).

TEF values for PCNs have not yet been adopted by regulatory bodies, however, to provide an interim indication of the possible PCN-associated toxicity PCN TEQ values relative to Tetrachlorodibenzodioxin (TCDD) have been calculated and included in Table 2.

The TEFs were derived from four relative potency studies^{4,6,7,12} using the highest values where applicable for each congener analyzed and assuming that, where congeners coeluted, the content comprised only the congener with the higher or only TEF (see footnote to Table 2). These PCN TEQ values so calculated have been included in Table 2.

Table 2 Concentration of PCNs in food expressed as ng/kg fresh weight and total TEQ

	Samples	Ν	Fat %	PCN Congener (ng/kg fresh weight)									Sum	TEQ ^a
				52/60	53	66/67	68	69	71/72	73	74	75		
	Basmati Rice	1	1.4	0.13	0.02	0.02	0.01	0.02	0.01	0.01	0.01	0.02	0.25	0.0002
	Bread	1	2.2	0.19	0.09	0.02	0.02	0.03	0.02	0.02	0.01	0.02	0.42	0.0003
	Cornflakes	1	1	0.31	0.23	0.04	0.03	0.05	0.03	0.02	0.02	0.04	0.77	0.0004
	Oats	1	6.8	0.30	0.05	0.04	0.03	0.05	0.03	0.02	0.02	0.04	0.58	0.0004
	Cabbage	1	0.2	0.53	2.09	0.01	0.03	0.05	0.10	0.01	0.01	0.01	2.84	0.0003
	Vine Tomatoes	1	0.2	0.03	0.09	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.19	0.0001
Other	Mushrooms	1	0.3	0.45	1.20	0.01	0.01	0.02	0.04	0.01	0.01	0.01	1.76	0.0002
đ	Potatoes	1	0.1	0.07	0.02	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.16	0.0001
	Rooster Potatoes	1	0.2	0.08	0.03	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.18	0.0001
	Sweetcorn	1	2	0.07	0.06	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.20	0.0001
	Tomato puree	1	0.7	0.08	0.08	0.01	0.01	0.02	0.01	0.01	0.01	0.02	0.25	0.0001
	Sausages	1	35.4	0.14	0.13	0.14	0.01	0.03	0.02	0.03	0.01	0.03	0.54	0.0007
	Ham	1	2.5	0.05	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.13	0.0001
	Red Cheddar	1	27.1	0.17	0.03	0.26	0.02	0.03	0.01	0.12	0.01	0.03	0.68	0.0015

OCTOBER 2010

	Samples N Statistics Fat % PCN Congener (ng/kg fresh weight)										Sum	TEQ ^a			
					52/60 53 66/67 68 69 71/72 73 74 75									oum	1 L Q
	Mackerel		Mean	4.25	5.42	1.20	0.32	0.27	0.24	0.32	0.03	0.13	0.02	7.94	0.0028
		3	Min	3.10	4.30	0.53	0.32	0.13	0.18	0.32	0.03	0.10	0.02	5.90	0.0020
		Ŭ	Max	5.20	8.57	1.98	0.73	0.61	0.38	0.46	0.03	0.12	0.02	12.90	0.0057
			Mean	14.96	32.70	2.56	3.32	1.46	1.36	1.26	0.43	0.17	0.03	43.28	0.0223
	Farmed	5	Min	11.00	9.52	0.81	0.86	0.40	0.41	0.39	0.06	0.15	0.03	12.65	0.0058
Ļ	Salmon	5	Max	17.50	45.07	3.66	4.84	2.06	1.96	1.77	0.69	0.18	0.03	59.30	0.0321
Fish			Mean	2.33	2.12	0.79	0.25	0.24	0.29	0.45	0.08	0.08	0.03	4.32	0.0026
	Trout	3	Min	1.80	0.90	0.32	0.13	0.13	0.16	0.24	0.03	0.04	0.02	2.08	0.0014
	mout	Ũ	Max	2.70	3.57	1.58	0.35	0.43	0.54	0.80	0.10	0.13	0.04	7.47	0.0042
			Mean	2.12	0.75	0.28	0.00	0.01	0.02	0.00	0.01	0.01	0.01	1.11	0.0001
	Pacific	5	Min	1.7	0.10	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.18	0.0001
	Oysters	Ŭ	Max	3.1	1.61	0.65	0.01	0.01	0.03	0.02	0.01	0.01	0.01	2.34	0.0002
			Mean	3.9	0.04	0.03	0.03	0.01	0.00	0.02	0.03	0.03	0.01	0.22	0.0002
	Milk	15	Min	2.6	0.04	0.03	0.03	0.01	0.01	0.01	0.03	0.03	0.03	0.22	0.0003
Ņ		10	Max	5.1	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.03	0.0001
Dairy			Mean	81.66	0.53	0.00	0.67	0.07	0.09	0.05	0.35	0.00	0.09	2.04	0.0004
	Butter	5	Min	80.9	0.33	0.09	0.07	0.07	0.09	0.05	0.05	0.00	0.09	1.31	0.0042
	Dutter	5	Max	83	0.40	0.03	1.42	0.08	0.00	0.06	0.73	0.08	0.00	3.13	0.0012
			Mean	10.12	0.00	0.07	0.05	0.00	0.06	0.00	0.02	0.00	0.10	0.62	0.0004
Eggs	Eggs	15	Min	8.8	0.11	0.07	0.03	0.04	0.00	0.00	0.02	0.01	0.02	0.02	0.0002
Еg	Lggs	10	Max	11.2	1.47	0.02	0.02	0.01	0.02	0.08	0.01	0.01	0.01	2.22	0.0002
	Avian	3	Mean	5.00	0.22	0.12	0.02	0.02	0.20	0.00	0.03	0.01	0.02	0.37	0.0002
			Min	4.8	0.08	0.04	0.02	0.02	0.01	0.01	0.02	0.01	0.02	0.18	0.0002
			Max	5.1	0.43	0.02	0.03	0.03	0.02	0.01	0.03	0.01	0.02	0.61	0.0003
			Mean	3.55	0.09	0.02	0.00	0.00	0.02	0.01	0.00	0.01	0.02	0.30	0.0006
	Bovine	2	Min	3.3	0.08	0.02	0.08	0.01	0.02	0.01	0.03	0.01	0.02	0.29	0.0005
	Dovine	2	Max	3.8	0.00	0.02	0.00	0.01	0.02	0.01	0.05	0.01	0.02	0.20	0.0006
		2	Mean	4.25	0.08	0.02	0.34	0.02	0.01	0.01	0.00	0.01	0.02	0.55	0.0015
Liver	Equine		Min	3.8	0.00	0.02	0.29	0.02	0.01	0.02	0.03	0.01	0.02	0.53	0.0013
Ľ	Equine		Max	4.7	0.08	0.02	0.38	0.02	0.01	0.03	0.00	0.01	0.02	0.57	0.0017
			Mean	5.40	0.00	0.12	1.18	0.02	0.01	0.00	0.93	0.01	0.02	2.44	0.0077
	Ovine	3	Min	4.3	0.07	0.06	0.69	0.01	0.02	0.02	0.42	0.02	0.00	1.34	0.0041
	Ovine		Max	4.0 7	0.18	0.24	1.96	0.02	0.02	0.03	1.80	0.03	0.05	4.26	0.0135
			Mean	3.95	0.09	0.06	0.10	0.02	0.02	0.00	0.02	0.00	0.00	0.33	0.0005
	Porcine	2	Min	3.7	0.07	0.00	0.08	0.01	0.02	0.01	0.02	0.01	0.02	0.28	0.0005
	I OICINE	2	Max	4.2	0.07	0.09	0.00	0.01	0.01		0.01		0.01	0.20	0.0005
			Mean	84.63	3.39	1.01	0.51	0.41	0.38	0.01	0.43	0.01	0.02	6.54	0.0054
	Avian	6	Min	67	0.88	0.29	0.17	0.25	0.00	0.27	0.40	0.05	0.08	2.81	0.0029
	Avian	0	Max	92.7	8.60	1.54	0.17	0.23	0.17	0.14	0.20	0.05	0.08	13.41	0.0029
			Mean	81.52	0.53	0.13	1.03	0.09	0.75	0.05	0.73	0.00	0.12	2.32	0.0093
at	Bovine	5	Min	75.8	0.55	0.13	0.95	0.05	0.09	0.05	0.30	0.05	0.09	2.32	0.0054
s Fat	Dovine		Max	87.3	0.47	0.17	1.08	0.05	0.08	0.05	0.20	0.05	0.08	2.24	0.0050
Carcass			Mean	87.50	0.02	0.17	1.85	0.05	0.09	0.03	0.54	0.05	0.09	3.61	0.0094
Jarc	Ovine	5		84.2	0.58	0.25	1.51	0.06	0.09	0.09	0.33	0.00	0.10	2.95	0.0094
0	Ovine	5	Min Max	93.7	0.42	0.10	2.26	0.06	0.09	0.06	0.34	0.04		4.17	0.0075
			Max	93.7 71.04	0.69		0.31						0.11	4.17	0.0010
	Doroino	F	Mean			0.32		0.06	0.10	0.10	0.08	0.06	0.11		
	Porcine	5	Min	64.8	0.42	0.10	0.24	0.06	0.09	0.06	0.06	0.04	0.09	1.63	0.0017
			Max	77.2	0.95	0.46	0.45	0.08	0.13	0.12	0.08	0.07	0.13	1.90	0.0024

Table 2 continued Concentration of PCNs in food expressed as ng/kg fresh weight and total TEQ

^a TEF values taken from Behnisch et al., 2003; Blakenship, et al., 2000; Hanberg et al., 1990; Villeneuve et al., 2000 (PCN52: 0.000025, PCN53: 0.0000018, PCN66/67: 0.004, PCN68: 0.0028, PCN69: 0.002, PCN71/72: 0.00009, PCN73: 0.0031, PCN74: 0.0000041, PCN75: 0.00001).

OCTOBER 2010

All samples apart from rice, processed tomatoes and beans (Other Foods category), showed the presence of PCNs, although the frequency of detection and relative abundance varied depending on the congener and the type of food. Fish showed a larger range of detected congeners as well as the most abundant occurrence. The moderately chlorinated congeners (penta-) dominated the profile, with abundance gradually declining as the degree of chlorination increased. A similar profile was observed for eggs, but for most meat (apart from poultry) and dairy products, the toxicologically more significant congeners - PCN 66/67 and PCN 73, were often the only congeners detected.

This contrasting profile observed for tissues from higher order animal and milk/dairy products may be the result of selective bio-accumulation or metabolic processes. Only three popular species of fish were investigated – mackerel, salmon and trout, but of these the most oily fish, salmon (15% fat), showed the highest levels – on average, an order of magnitude higher than trout (2.3% fat).

Relatively high concentrations were also observed in the samples of animal fat which reflect PCN concentration in meat, although avian (chicken) fat was found to contain higher levels than the other species. Ovine fat showed comparable levels to some of the avian fat, and this is also reflected in the samples of ovine liver.

TEQ values ranged from 0.0001 ng/kg TEQ mainly for vegetables and vegetable-based foods and some shellfish to 0.03 ng/kg TEQ for fish.

EXPOSURE ESTIMATES

Exposure of the Irish population to PCNs has been calculated using Crème probabilistic modelling software¹³ based on the occurrence data for carcass fat, milk, eggs, offal and fish shown in this report.

Estimated contribution to the total TEQ from PCNs from consumption of food of animal origin was calculated at approximately 0.14 pg/kg bw/month. This can be compared with the exposure of the average adult population to upperbound Total WHO TEQ PCDD/Fs & DL-PCBs from consumption of food of animal origin, which is estimated at 12 pg/kg bw/month¹⁴. The contribution made by the PCNs to the total WHO TEQ is approximately 1% of the estimated for dioxins and PCBs. This finding is in line with the considerably lower PCN TEQ concentrations in the samples analysed in this study.

DISCUSSION

This study demonstrates the universal presence of PCNs in food and provides baseline information on the concentrations found in Irish food. Whilst there is variation in occurrence depending on individual congeners of these contaminants and the types of food studied, the widespread detection in Irish food underlines the ubiquity of these contaminants, since Ireland generally shows food contamination levels that are below the European average for environmental contaminants such as dioxins and PCBs except following specific contamination incidents.

The profile of PCN congener occurrence in some foods (e.g. in some vegetable-based foods, fish etc, where metabolic or other degradation pathways are unlikely to be significant) is similar to that of commercial mixtures of PCNs, and despite other sources such as incineration being reported, the legacy of past commercial usage still appears to strongly influence the background pattern of occurrence.

It is clear from the data that PCN TEQ is considerably lower for the samples analysed in this work, than for similar samples from Ireland analysed for PCB and dioxin TEQ. For example an average TEQ of 0.03 ng/kg for salmon can be an order of magnitude or more lower compared to other dioxin-like compounds (average - 0.54 ng/kg PCDD/F TEQ and 1.61 ng/kg PCB-TEQ for fish) in similar foods¹⁵,¹⁶.

The levels of PCNs observed in this Irish study are broadly similar to the few, recently reported levels in other countries^{11,17,18,19} Comparisons with data from the current study are limited primarily due to the scarcity of data, but also because there are only a few congener-specific studies, and these have investigated environmental media² or environmental biota²⁰. Congener selective measurement is an important consideration for food safety given that the emerging information on PCN toxicology increasingly involves estimates of potency for individual PCN congeners. Recent studies on edible fish and food ^{17,21,22} have reported data on the sum of PCN homologue

OCTOBER 2010

groups or different sets of congeners, and it is important to note that, in comparison with these data, the sum of the 12 targeted PCN congeners reported in the current study will always be an underestimate of the total PCN content. Thus the median whole weight concentrations of 340 ng/kg for Baltic salmon, 57 ng/kg for Baltic herring, and 71 ng/kg for Baltic sprat¹⁷ compare with 46.5 ng/kg for salmon, 6.5 ng/kg for mackerel, and 3.41 ng/kg for trout in this study. Similarly the average concentration reported in a recent Spanish study on food for the sum of PCNs in fish ²² was 47.1 ng/kg as compared to 21.7 ng/kg in this study. Average concentrations for eggs and milk were 4.3, and 0.8 ng/kg, respectively²², compared to 0.62, and 0.22 ng/kg, respectively, in this study. A recent congener specific survey conducted on individual samples in the UK¹¹ reported ranges similar found to the ones reported in pooled samples in this survey.

CONCLUSIONS

This study demonstrates the universal presence of PCNs in food. However, the survey shows that Irish produce contains low amounts of the persistent bio-accumulative toxicants measured in this survey compared to other legacy POPs such as dioxins and PCBs, and levels observed do not raise concern for human health.

REFERENCES

- ¹ lino, F.; Imagawat, T.; Takeuchi, M.; Sadakata, M. (1999) De novo synthesis mechanism of PCDFs from polycyclic aromatic hydrocarbons and the characteristic isomers of PCNs. Environ. Sci. Technol. 1999, 33, 1038–1043.
- ² Takasuga, T.; Inoue, T.; Ohi, E.; Kumar, K. (2004) Formation of PCNs, PCDD/Fs and organochlorine pesticides in thermal processes and their occurrence in air. Arch. Environ. Contam. Toxicol. 2004, 46, 419–431.
- ³ Blankenship, A.; Kannan, K.; Villalobos, S.; Villeneuve, D.; Falandysz, J.; Imagawa, T.; Jakobsson, E.; Giesy, J. (1999) Relative potencies of Halowax mixtures and individual polychlorinated naphthalenes (PCNs) to induceAhreceptor-mediated responses in the rat hepatoma H4IIE-luc cell bioassay. Organohalogen Compd. 1999, 42, 217–220.
- ⁴ Blankenship, A.; Kannan, K.; Villalobos, S.; Villeneuve, D.; Falandysz, J.; Imagawa, T.; Jakobsson, E.; Giesy, J. (2000) Relative potencies of Halowax mixtures and individual PCNs to induce Ah receptormediated responses in the rat hepatoma H4IIE-Luc cell bioassay. *Environ. Sci. Technol.* **2000**, *34* (15), 3153–3158.
- ⁵ Engwall, M.; Brundstrom, B.; Jakobsson, E. (1994) Ethoxyresorufin O-deethylase (EROD) and arylhydrocarbon hydroxylase (AHH) - inducing potency and lethality of chlorinated naphthalenes in chicken (*Gallus domesticus*) and eider duck (*Somateria mollissima*) embryos. *Arch. Toxicol.* **1994**, *68*, 37–42.
- ⁶ Hanberg, A.; Waern, F.; Asplund, L.; Haglund, P.; Safe, S. (1990) Swedish dioxin survey: determination of 2,3,7,8-TCDD toxic equivalent factors for some polychlorinated biphenyls and naphthalenes using biological tests. *Chemosphere* **1990**, *20*, 1161–1164.
- ⁷ Villeneuve, D. L.; Khim, J. S.; Kannan, K.; Falandysz, J.; Blankenship, A. L.; Nikiforov, V.; Giesy, J. (2000) Relative potencies of individual PCNs to induce dioxin-like response in fish and mammalian *in vitro* bioassays. *Arch. Environ. Contam. Toxicol.* **2000**, *39* (3), 273–81.
- ⁸ World Health Organization (2001). Chlorinated Naphthalenes; Concise International Chemical Assessment, Document 34; 2001; available at http://www.inchem.org/documents/cicads/cicads/cicads4.htm.
- ⁹ EFSA's 1st Scientific Colloquium Methodologies and principles for setting tolerable intake levels for dioxins, furans and dioxin-like PCB's

OCTOBER 2010

- ¹⁰ Van den Berg M, Birnbaum L, Denison M, De Vito M, Farland W, Feeley M, Fiedler H, Hakansson H, Hanberg A, Haws L, Rose M, Safe S, Schrenk D, Tohyama C, Tritscher A, Tuomisto J, Tysklind M, Walker N, Peterson R (2006) The 2005 World Health Organization Reevaluation of Human and Mammalian Toxic Equivalency Factors for Dioxins and Dioxin-Like Compounds. TOXICOLOGICAL SCIENCES 93(2), 223–241 (2006)
- ¹¹ Fernandes A, Mortimer D, Gem M, Smith F, Rose M, Panton S, Carr M. (2010) Polychlorinated Naphthalenes (PCNs): Congener Specific Analysis, Occurrence in Food, and Dietary Exposure in the UK. *Environ Sci Technol*, 44: 3533–3538
- ¹² Behnisch P, Hosoe K and Sakai S (2003) Brominated dioxin-like compounds: in vitro assessment in comparison to classical dioxin-like compounds and other polyaromatic compounds. *Environ. Int.* 29, 861-877
- ¹³ Creme Food. CREMe Software Ltd 2005-2008, www.cremesoftware.com
- ¹⁴ Food Safety Authority of Ireland (2010) Investigation into levels of chlorinated and brominated organic pollutants in carcass fat, offal, eggs and milk produced in Ireland. Chemical Monitoring and Surveillance Series. <u>www.fsai.ie</u>
- ¹⁵ Food Safety Authority of Ireland (2007). Investigation into levels of dioxins, furans, polychlorinated biphenyls and brominated flame retardants in fishery produce in Ireland. Available at:http://www.fsai.ie/resources and publications/surveys.html
- ¹⁶ Food Standards Agency (2006) Brominated chemicals: UK dietary intakes. Food Surveillance Information Sheet 10/06 available at www.food.gov.uk/multimedia/pdfs/fsis1006.pdf
- ¹⁷ Isosaari, P.; Hallikainen, A.; Kiviranta, H.; Vuorinen, P.; Parmanne, R.; Koistinen, J.; Vartainen, T. Dioxins, PCBs, PCNs and PBDEs in edible fish caught from the Baltic sea and lakes in Finland. *Environ. Pollut.* **2006**, *141*, 213–225.
- ¹⁸ Domingo, J.; Falco, G.; Llobe, J.; Casas, C.; Teixido, A.; Muller, L. PCNs in foods: estimated dietary intake by the population of Catalonia, Spain. *Environ. Sci. Technol.* **2003**, *37* (11), 2332–2335.
- ¹⁹ Falandysz, J. Chloronaphthalenes as food chain contaminants: a review. *Food Add. Contam.* **2003**, *20*, 995–1014.
- ²⁰ Hanari, N.; Kannan, K.; Horii, Y.; Taniyasu, S.; Yamashita, N.; Jude, D.; Berg, M. PCNs and PCBs in benthic organisms of a Great Lakes food chain. *Arch. Environ. Contam. Toxicol.* **2004**, *47*, 84–93.
- ²¹ Jiang, Q.; Hanari, N.; Miyake, Y.; Okazawa, T.; Lau, R.; Chen, K.; Wyrzykowska, B.; So, M.; Yamashta, N.; Lam, P. Health Risk assessment for PCBs, PCDD/Fs and PCNs in seafood from Guangzhou and Zhoushan, China. *Environ. Pollut.* **2007**, *148*, 31–39.
- ²² Marti-Cid, R.; Llobet, J.;Castell, V.; Domingo, J.Humanexposure to PCNs and PCDEs from foods in Catalonia, Spain: Temporal trends. *Environ. Sci. Technol.* **2008**, *42*, 4195–4201.

Abbey Court, Lower Abbey Street, Dublin 1.

Advice Line: 1890 336677 Telephone: +353 1 817 1300 Facsimile: +353 1 817 1301 Email: info@fsai.ie Website: www.fsai.ie